风电场电气选择对环境因素的考虑有哪些方面

网上有关“风电场电气选择对环境因素的考虑有哪些方面”话题很是火热,小编也是针对风电场电气选择对环境因素的考虑有哪些方面寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

需要考虑如下方面:

风电场的宏观选址是指在一个较大的区域,对形成风的各种因素包括地形、地貌、地质、气象、交通运输、接入系统等因素进行综合分析,找出风资源较好,具备装机条件的风场。风电场宏观选址是整个风电场建设的最重要的一个环节。

(1)风资源:风资源是风场必须具备的先决条件,没有良好的风资源,一切都是空谈,良好的风资源才能提高整个风场的经济效益。一般来说风功率密度等级达到2级及以上的区域具有开发价值。风力发电机组一般在3~25m/s风速区间可以进行发电,小于3m/s风速风机叶片虽然有转动但是机组仅做无用功,大于25m/s时,为考虑风机运行的安全性,需要停机。

(2)地形、地貌:地形,是指地势高低起伏的变化,即地表的形态。分为:山脉、丘陵、河流、湖泊、海滨、沼泽等。 地貌分八种:山地,盆地,丘陵,平原,高原等。假如以图形表示,也就是用等高线绘制出来的地形图。对于内陆风电场,风资源较好的地方,都有其特殊的地形、地貌。

(3)工程地质:风电机组基础位置最好是承载力强的基岩、密实的壤土或者粘土等。良好的地质条件可以减少风机基础的处理量,减少工程造价。

(4)交通条件:风能资源丰富的地区一般都在比较偏远的地区,如山脊、戈壁滩、草原和海岛等,必须拓宽现有的道路并新修部分道路以满足大部件运输,其中有些部件的长度可能超过30米。如GW70/1500型风机叶片直径长约34m。

(5)电网连接:并网型风力发电机组需要与电网连接,厂址选址时候应尽量靠近电网,对于小型风电项目而言,要求距离10~35kV电网较近;对于较大型风电项目而言,要求距离110~220kV电网较近,风电场距离电网较近不但可以降低电网成本,而且还可以减少电网损耗,满足电压降要求。

(6)气象灾害:在选址工作中,应对某些对风力发电机组有影响的气象予以考虑,其中有些气象对风机发电机组可能造成灾害性的破坏。比如海边风场的飓风、龙卷风都可能在短时间内摧毁风机。在我国北方地区,气温低于零下30℃,风机将切出运行,低于零下40℃,对风电机组就形成破坏,还有一些气象可能影响风机的运行寿命。

除了上述几个条件外,还要考虑社会经济因素,随着技术发展和风电机组生产批量的增加,风电成本逐步降低,但是目前风电上网电价任比煤电高出约0.3元/kW.h,对于风资源较差地方,其上网电价更高。虽然风电对环境保护有利,但是对经济发展缓慢、电网较小、电价承受能力差的地方,会造成较重的负担。

微观选址是进一步确定风力发电机组的详细定位,使整个风电场具有更好的经济效益的过程。风电场微观选址涉及的因素较多,主要有风电场土地的性质、周围村庄和建筑物的分布、当地环境部门的要求等。在充分考虑这些限制因素的情况下,结合风电场风资源分布图进行优化机位,在初步选址之后进行现场勘探定点,并确定最终布局。

风电场微观选址主要从以下方面予以考虑和重视。

(1)地面粗糙度

在近地层中,风速随高度有显著的变化,但由于地面粗糙度的不同,风速随高度的变化也不同。风速随高度的增大,是风速受地面粗糙度的影响引起的,大气底层常用指数公式表示风速和高度的关系。

Vn/V1=(Zn/Z1)a

Vn指高度Zn处的风速,V1指高度Z1处的风速,a指数。

(2) 运行期间噪音及电磁波

风力发电是清洁、无污染的可再生能源,其生产过程是利用自然风能转化为机械能,再将机械能转化为电能的过程,不会损害和污染环境。风力发电机组安装在开阔地带,每台风机基础仅占用较小的面积,不会对当地的生态环境有所影响。

风力发电场运行时会产生一定能量的电磁辐射,但其强度较低,且距离居民区较远,不会对居民身体健康产生危害。通过对已建风电场周围居民的调查,目前运行的风电场对当地无线电、电视等电器设备没有影响,因此风电场不会对当地电话、电视、电信等产生干扰。

(3) 地形、地质

风机位地形、地貌直接影响到每个风机位的投资。如果地形较平坦,地面附着物较少,风机位平整土石方量就较小,附着物的补偿费用也较少,投资省。在风机布置时,还应考虑避开居民区、军事设施、矿藏、池塘等。

(4) 风电场内的道路

根据地形及风况数据,力求风力机组处于风速较高且风能分布较好的山顶和山脊位置,同时兼顾运输条件及安装条件的许可。

在风力发电厂的建设中,风电场内施工检修道路起着举足轻重的作用,虽然道路的投资在整个风电场的总投资中所占的比重并不大,但就每个机位的道路投资有一定的差别。就微观选址而言,道路的投资是影响单个风机经济性的一个因素。道路标准选择、线路设计是否合理直接影响到整个风电场的施工安装。

(5) 风电场征租地的因素

为了提高效率,减小尾流、湍流等因素的影响,风力发电机组之间必须保持足够的距离,因此,风电场的范围一般都比较大。在偌大的风电场内,绝大部分土地的利用不受影响,因此,一般风电场采用点征、带状征地。

与其他建设用地不同,风电场占用土地的特点是“分散”。除风电场升压站的建设需要大约100m×200m地方外,风力发电机组机位用地分散在众多“点”上,修路以及输电线路用地分散在很长的“线”上。虽然风电场建设实际占用土地不多,但是所用土地覆盖的范围很广。

风电场的风机位众多,风机的施工、安装及检修范围大,决定了“风电场道路”是风电场建设征地的主要对象。风电场建设周期很短,建成后风电场使用所修道路的几率较低,因此风电场的道路选线时优先考虑与乡村道路及田间道路相结合,这样既可改善当地的运输条件,充分发挥这些道路的作用,为新农村建设助了一臂之力,又可节省征地费用。

影响风电场选址的因素很多,无论沿海还是内陆风场,无论平原还是山区风场,都有各自的特点,理想风电场往往受到诸多因素的限制而不能开发或者由于考虑不周全致使投资商做出决策性的失误,不但造成资源的浪费,还浪费大量的财力、物力。本文是基于风场中建设过程中,对需要考虑的问题进行了总结,对风电场宏观、微观选址需要考虑的诸多因素进行了一定的描述。希望能为风力发电项目建设作出一点贡献。

地球的资料

解:空间曲线F(x,y,z)=0 绕Z轴旋转

1、解出x=f(z) , y=g(z)

2、旋转体的方程为 XX+YY=f(z)f(z)+g(z)g(z)

其他同理

比如X+Y=1绕Y轴旋转:

x=y-1 y=y

旋转体的方程为 xx=(1-y)(1-y)。

体积为y-1*y。

y=-1, V1 = ∫<0,1> π[(x+1)^2-(x^2+1)^2]dx

= ∫<0,1> π(2x-x^2-x^4)dx = π[x^2-x^3/3-x^5/5]<0,1> = 7π/15

(2) 绕 x=-1, V2 = ∫<0,1> π[(√y+1)^2-(y+1)^2]dy

= ∫<0,1> π(2√y-y-y^2)dx = π[(4/3)y^(3/2)-y^2/2-y^3/3]<0,1> = π/2.

或用柱壳法, V2 = ∫<0,1> 2π(x+1)(x-x^2)dx

= ∫<0,1> 2π(x-x^3)dx = π[x^2-x^4/2]<0,1> = π/2

扩展资料

体积的计算公式

圆柱体的体积公式:体积=底面积×高 ,如果用h代表圆柱体的高,则圆柱=S底×h

长方体的体积公式:体积=长×宽×高

如果用a、b、c分别表示长方体的长、宽、高则长方体体积公式为:V长=abc

正方体的体积公式:体积=棱长×棱长×棱长

如果用a表示正方体的棱长,则正方体的体积公式为V正=a·a·a=a

锥体的体积=底面面积×高÷3 V 圆锥=S底×h÷3

台体体积公式:V=[ S上+√(S上S下)+S下]h÷3

圆台体积公式:V=(R?+Rr+r?)hπ÷3

球缺体积公式=πh?(3R-h)÷3

球体积公式:V=4πR/3

棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高)

棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h

注:V:体积;S1:上表面积;S2:下表面积;h:高。

百度百科-旋转体

百度百科-体积

关于龙卷风

地球的基本参数:

平均赤道半径: ae = 6378136.49 米

平均极半径: ap = 6356755.00 米

平均半径: a = 6371001.00 米

赤道重力加速度: ge = 9.780327 米/秒2

平均自转角速度: ωe = 7.292115 × 10-5 弧度/秒

扁率: f = 0.003352819

质量: M⊕ = 5.9742 ×1024 千克

地心引力常数: GE = 3.986004418 ×1014 米3/秒2

平均密度: ρe = 5.515 克/厘米3

太阳与地球质量比: S/E = 332946.0

太阳与地月系质量比: S/(M+E) = 328900.5

回归年长度: T = 365.2422 天

离太阳平均距离: A = 1.49597870 × 1011 米

逃逸速度: v = 11.19 公里/秒

表面温度: t = - 30 ~ + 45 ℃

表面大气压: p = 1013.250毫巴

1)地球各圈层结构:

人们对于地球的结构直到最近才有了比较清楚的认识.整个地球不是一个均质体,而是具有明显的圈层结构地球每个圈层的成分、密度、温度等各不相同。在天文学中,研究地球内部结构对于了解地球的运动、起源和演化,探讨其它行星的结构,以至于整个太阳系起源和演化问题,都具有十分重要的意义。地球圈层分为地球外圈和地球内圈两大部分。地球外圈可进一步划分为四个基本圈层,即大气圈、水圈、生物圈和岩石圈;地球内圈可进一步划分为三个基本圈层,即地幔圈、外核液体圈和固体内核圈。此外在地球外圈和地球内圈之间还存在一个软流圈?堑厍蛲馊τ氲厍蚰谌χ?涞囊桓龉?扇∑悖?挥诘孛嬉韵缕骄?疃仍?50公里处。

这样,整个地球总共包括八个圈层,其中岩石圈、软流

圈和地球内圈一起构成了所谓的固体地球。对于地球外

圈中的大气圈、水圈和生物圈,以及岩石圈的表面,一

般用直接观测和测量的方法进行研究。而地球内圈,目

前主要用地球物理的方法,例如地震学、重力学和高精

度现代空间测地技术观测的反演等进行研究。地球各圈层在分布上有一个显著的特点,即固体地球内部与表面之上的高空基本上是上下平行分布的,而在地球表面附近,各圈层则是相互渗透甚至相互重叠的,其中生物圈表现最为显著,其次是水圈

I 大气圈:

大气圈是地球外圈中最外部的气体圈层,它包围着海洋和陆地。大气圈没有确切的上界,在2000~16000公里高空仍有稀薄的气体和基本粒子。在地下,土壤和某些岩石中也会有少量空气,它们也可认为是大气圈的一个组成部分。地球大气的主要成份为氮、氧、氩、二氧化碳和不到0.04%比例的微量气体。地球大气圈气体的总质量约为5.136×1021克,相当于地球总质量的百万分之0.86。由于地心引力作用,几乎全部的气体集中在离地面100公里的高度范围内,其中75%的大气又集中在地面至10公里高度的对流层范围内。根据大气分布特征,在对流层之上还可分为平流层、中间层、热成层等。

II 水圈:

水圈包括海洋、江河、湖泊、沼泽、冰川和地下水等,它是一个连续但不很规则的圈层。从离地球数万公里的高空看地球,可以看到地球大气圈中水汽形成的白云和覆盖地球大部分的蓝色海洋,它使地球成为一颗“蓝色的行星”。地球水圈总质量为1.66×1024克,约为地球总质量的3600分之一,其中海洋水质量约为陆地(包括河流、湖泊和表层岩石孔隙和土壤中)水的35倍。如果整个地球没有固体部分的起伏,那么全球将被深达2600米的水层所均匀覆盖。大气圈和水圈相结合,组成地表的流体系统。

III 生物圈:

由于存在地球大气圈、地球水圈和地表的矿物,在地球上这个合适的温度条件下,形成了适合于生物生存的自然环境。人们通常所说的生物,是指有生命的物体,包括植物、动物和微生物。据估计,现有生存的植物约有40万种,动物约有110多万种,微生物至少有10多万种。据统计,在地质历史上曾生存过的生物约有5-10亿种之多,然而,在地球漫长的演化过程中,绝大部分都已经灭绝了。现存的生物生活在岩石圈的上层部分、大气圈的下层部分和水圈的全部,构成了地球上一个独特的圈层,称为生物圈。生物圈是太阳系所有行星中仅在地球上存在的一个独特圈层。

IV 岩石圈:

对于地球岩石圈,除表面形态外,是无法直接观测到的。它主要由地球的地壳和地幔圈中上地幔的顶部组成,从固体地球表面向下穿过地震波在近33公里处所显示的第一个不连续面(莫霍面),一直延伸到软流圈为止。岩石圈厚度不均一,平均厚度约为100公里。由于岩石圈及其表面形态与现代地球物理学、地球动力学有着密切的关系,因此,岩石圈是现代地球科学中研究得最多、最详细、最彻底的固体地球部分。由于洋底占据了地球表面总面积的2/3之多,而大洋盆地约占海底总面积的45%,其平均水深为4000~5000米,大量发育的海底火山就是分布在大洋盆地中,其周围延伸着广阔的海底丘陵。因此,整个固体地球的主要表面形态可认为是由大洋盆地与大陆台地组成,对它们的研究,构成了与岩石圈构造和地球动力学有直接联系的“全球构造学”理论。

V 软流圈:

在距地球表面以下约100公里的上地幔中,有一个明显的地震波的低速层,这是由古登堡在1926年最早提出的,称之为软流圈,它位于上地幔的上部即B层。在洋底下面,它位于约60公里深度以下;在大陆地区,它位于约120公里深度以下,平均深度约位于60~250公里处。现代观测和研究已经肯定了这个软流圈层的存在。也就是由于这个软流圈的存在,将地球外圈与地球内圈区别开来了。

VI 地幔圈:

地震波除了在地面以下约33公里处有一个显著的不连续面(称为莫霍面)之外,在软流圈之下,直至地球内部约2900公里深度的界面处,属于地幔圈。由于地球外核为液态,在地幔中的地震波S波不能穿过此界面在外核中传播。P波曲线在此界面处的速度也急剧减低。这个界面是古登堡在1914年发现的,所以也称为古登堡面,它构成了地幔圈与外核流体圈的分界面。整个地幔圈由上地幔(33~410公里深度的B层,410~1000公里深度的C层,也称过渡带层)、下地幔的D′层(1000~2700公里深度)和下地幔的D〃层(2700~2900公里深度)组成。地球物理的研究表明,D〃层存在强烈的横向不均匀性,其不均匀的程度甚至可以和岩石层相比拟,它不仅是地核热量传送到地幔的热边界层,而且极可能是与地幔有不同化学成分的化学分层。

VII 外核液体圈:

地幔圈之下就是所谓的外核液体圈,它位于地面以下约2900公里至5120公里深度。整个外核液体圈基本上可能是由动力学粘度很小的液体构成的,其中2900至4980公里深度称为E层,完全由液体构成。4980公里至5120公里深度层称为F层,它是外核液体圈与固体内核圈之间一个很簿的过渡层。

VIII 固体内核圈:

地球八个圈层中最靠近地心的就是所谓的固体内核圈了,它位于5120至6371公里地心处,又称为G层。根据对地震波速的探测与研究,证明G层为固体结构。地球内层不是均质的,平均地球密度为5.515克/厘米3,而地球岩石圈的密度仅为2.6~3.0克/厘米3。由此,地球内部的密度必定要大得多,并随深度的增加,密度也出现明显的变化。地球内部的温度随深度而上升。根据最近的估计,在100公里深度处温度为1300°C,300公里处为2000°C,在地幔圈与外核液态圈边界处,约为4000℃,地心处温度为5500 ~ 6000℃。

2)地球的运动:

I 地球的自转:

地球存在绕自转轴自西向东的自转,平均角速度为每小时转动15度。在地球赤道上,自转的线速度是每秒465米。天空中各种天体东升西落的现象都是地球自转的反映。人们最早利用地球自转作为计量时间的基准。自20世纪以来由于天文观测技术的发展,人们发现地球自转是不均的。1967年国际上开始建立比地球自转更为精确和稳定的原子时。由于原子时的建立和采用,地球自转中的各种变化相继被发现。现在天文学家已经知道地球自转速度存在长期减慢、不规则变化和周期性变化。

通过对月球、太阳和行星的观测资料和对古代月食、日食资料的分析,以及通过对古珊瑚化石的研究,可以得到地质时期地球自转的情况。在6亿多年前,地球上一年大约有424天,表明那时地球自转速率比现在快得多。在4亿年前,一年有约400天,2.8亿年前为390天。研究表明,每经过一百年,地球自转长期减慢近2毫秒,它主要是由潮汐摩擦引起的。此外,由于潮汐摩擦,使地球自转角动量变小,从而引起月球以每年3~4厘米的速度远离地球,使月球绕地球公转的周期变长。除潮汐摩擦原因外,地球半径的可能变化、地球内部地核和地幔的耦合、地球表面物质分布的改变等也会引起地球自转长期变化。

地球自转速度除上述长期减慢外,还存在着时快时慢的不规则变化,这种不规则变化同样可以在天文观测资料的分析中得到证实,其中从周期为近十年乃至数十年不等的所谓"十年尺度"的变化和周期为2~7年的所谓"年际变化",得到了较多的研究。十年尺度变化的幅度可以达到约±3毫秒,引起这种变化的真正机制目前尚不清楚,其中最有可能的原因是核幔间的耦合作用。年际变化的幅度为0.2~0.3毫秒,相当于十年尺度变化幅度的十分之一。这种年际变化与厄尔尼诺事件期间的赤道东太平洋海水温度的异常变化具有相当的一致性,这可能与全球性大气环流有关。然而引起这种一致性的真正原因目前正处于进一步的探索阶段。此外,地球自转的不规则变化还包括几天到数月周期的变化,这种变化的幅度约为±1毫秒。

地球自转的周期性变化主要包括周年周期的变化,月周期、半月周期变化以及近周日和半周日周期的变化。周年周期变化,也称为季节性变化,是二十世纪三十年代发现的,它表现为春天地球自转变慢,秋天地球自转加快,其中还带有半年周期的变化。周年变化的振幅为20~25毫秒,主要由风的季节性变化引起。半年变化的振幅为8~9毫秒,主要由太阳潮汐作用引起的。此外,月周期和半月周期变化的振幅约为±1毫秒,是由月亮潮汐力引起的。地球自转具有周日和半周日变化是在最近的十年中才被发现并得到证实的,振幅只有约0.1毫秒,主要是由月亮的周日、半周日潮汐作用引起的。

II 地球的公转:

1543年著名波兰天文学家哥白尼在《天体运行论》一书中首先完整地提出了地球自转和公转的概念。地球公转的轨道是椭圆的,公转轨道半长径为149597870公里,轨道的偏心率为0.0167,公转的平均轨道速度为每秒29.79公里;公转的轨道面(黄道面)与地球赤道面的交角为23°27’,称为黄赤交角。地球自转产生了地球上的昼夜变化,地球公转及黄赤交角的存在造成了四季的交替。

从地球上看,太阳沿黄道逆时针运动,黄道和赤道在天球上存在相距180°的两个交点,其中太阳沿黄道从天赤道以南向北通过天赤道的那一点,称为春分点,与春分点相隔180°的另一点,称为秋分点,太阳分别在每年的春分(3月21日前后)和秋分(9月23日前后)通过春分点和秋分点。对居住的北半球的人来说,当太阳分别经过春分点和秋分点时,就意味着已是春季或是秋季时节。太阳通过春分点到达最北的那一点称为夏至点,与之相差180°的另一点称为冬至点,太阳分别于每年的6月22日前后和12月22日前后通过夏至点和冬至点。同样,对居住在北半球的人,当太阳在夏至点和冬至点附近,从天文学意义上,已进入夏季和冬季时节。上述情况,对于居住在南半球的人,则正好相反。

III 地极移动:

地极移动,简称为极移,是地球自转轴在地球本体内的运动。1765年,欧拉最先从力学上预言了极移的存在。1888年,德国的屈斯特纳从纬度变化的观测中发现了极移。1891年,美国天文学家张德勒指出,极移包括两个主要周期成分:一个是周年周期,另一个是近14个月的周期,称为张德勒周期。前者主要是由于大气的周年运动引起地球的受迫摆动,后者是由于地球的非刚体引起的地球自由摆动。极移的振幅约为±0.4角秒,相当于在地面上一个12×12平方米范围。

由于极移,使地面上各点的纬度、经度会发生变化。1899年成立了国际纬度服务,组织全球的光学天文望远镜专门从事纬度观测,测定极移。随着观测技术的发展,从二十世纪六十年代后期开始,国际上相继开始了人造卫星多普勒观测、激光测月、激光测人卫、甚长基线干涉测量、全球定位系统测定极移,测定的精度有了数量级的提高。

根据近一百年的天文观测资料,发现极移包含各种复杂的运动。除了上述周年周期和张德勒周期外,还存在长期极移,周月、半月和一天左右的各种短周期极移。其中长期极移表现为地极向着西径约70°~80°方向以每年3.3~3.5毫角秒的速度运动。它主要是由于地球上北美、格棱兰和北欧等地区冰盖的融化引起的冰期后地壳反弹,导致地球转动惯量变化所致。其它各种周期的极移主要与日月的潮汐作用以及与大气和海洋的作用有关。

IV 岁差与章动:

在外力的作用下,地球的自转轴在空间的指向并不保持固定的方向,而是不断发生变化。其中地轴的长期运动称为岁差,而周期运动称为章动。岁差和章动引起天极和春分点位置相对恒星的变化。公元前二世纪,古希腊天文学家喜帕恰斯在编制一本包含1022颗恒星的星表时,首次发现了岁差现象。中国晋代天文学家虞喜,根据对冬至日恒星的中天观测,独立地发现了岁差。据《宋史?律历志》记载:“虞喜云:‘尧时冬至日短星昴,今二千七百余年,乃东壁中,则知每岁渐差之所至’”。岁差这个名词即由此而来。

牛顿第一个指出产生岁差的原因是太阳和月球对地球赤道隆起部分的吸引。在太阳和月球的引力作用下,地球自转轴在空间绕黄极描绘出一个圆锥面,绕行一周约需26000年,圆锥面的半径约为23°.5。这种由太阳和月球引起的地轴的长期运动称为日月岁差。除太阳和月球的引力作用外,地球还受到太阳系内其它行星的引力作用,从而引起地球运动的轨道面,即黄道面位置的不断变化,由此使春分点沿赤道有一个小的位移,称为行星岁差。行星岁差使春分点每年沿赤道东进约0.13角秒。

地球自转轴在空间绕黄极作岁差运动的同时,还伴随有许多短周期变化。英国天文学家布拉得雷在1748年分析了20年恒星位置的观测资料后,发现了章动现象。月球轨道面(白道面)位置的变化是引起章动的主要原因。目前天文学家已经分析得到章动周期共有263项之多,其中章动的主周期项,即18.6年章动项是振幅最大的项,它主要是由于白道的运动引起白道的升交点沿黄道向西运动,约18.6年绕行一周所致。因而,月球对地球的引力作用也有相同周期变化,在天球上它表现为天极在绕黄极作岁差运动的同时,还围绕其平均位置作周期为18.6年的运动。同样,太阳对地球的引力作用也具有周期性变化,并引起相应周期的章动。

3)地球的起源和演化:

I 地球的起源:

地球起源问题是同太阳系的起源紧密相联系的,因此探讨地球的起源问题,首先了解目前太阳系的三个主要特征是必要的。概括起来说,它们是:

1.太阳系中的九大行星,都按反时针方向绕太阳公转。太阳本身也以同一方向自转,这个特征称为太阳系天体运动的同向性。

2.上述行星绕太阳公转的轨道面,非常接近于同一平面,并且这个平面与太阳自转赤道面的夹角也不到6°,这个特征称为行星轨道运动的共面性。

3.除水星和冥王星外,其它所有行星的绕日公转轨道都很接近于圆轨道。这个特征称为行星轨道运动的近圆性。

关于地球的起源问题,已有相当长的探讨历史了。在古代,人们就曾探讨了包括地球在内的天地万物的形成问题,在此期间,逐渐形成了关于天地万物起源的“创世说”。其中流传最广的要算是《圣经》中的创世说。在人类历史上,创世说曾在相当长的一段时期内占据了统治地位。

自1543年波兰天文学家哥白尼提出了日心说以后,天体演化的讨论突破了宗教神学的桎梏,开始了对地球和太阳系起源问题的真正科学探讨。1644年,笛卡儿(R.Descartes)在他的《哲学原理》一书中提出了第一个太阳系起源的学说,他认为太阳、行星和卫星是在宇宙物质涡流式的运动中形成的大小不同的旋涡里形成的。一个世纪之后,布封(G.L.L. de Buffon)于1745年在《一般和特殊的自然史》中提出第二个学说,认为:一个巨量的物体,假定是彗星,曾与太阳碰撞,使太阳的物质分裂为碎块而飞散到太空中,形成了地球和行星。事实上由于彗星的质量一般都很小,不可能从太阳上撞出足以形成地球和行星的大量物质的。在布封之后的200年间,人们又提出了许多学说,这些学说基本倾向于笛卡尔的“一元论”,即太阳和行星由同一原始气体云凝缩而成;也有“二元论”观点,即认为行星物质是从太阳中分离出来的。1755年,著名德国古典哲学创始人康德(I. Kant)提出“星云假说”。1796年,法国著名数学和天文学家拉普拉斯(P. S. Laplace)在他的《宇宙体系论》一书中,独立地提出了另一种太阳系起源的星云假说。由于拉普拉斯和康德的学说在基本论点上是一致的,所以后人称两者的学说为"康德-拉普拉斯学说"。整个十九世纪,这种学说在天文学中一直占有统治的地位。

到本世纪初,由于康德-拉普拉斯学说不能对太阳系的越来越多的观测事实作出令人满意的解释,致使“二元论”学说再度流行起来。1900年,美国地质学家张伯伦(T. C. Chamberlain)提出了一种太阳系起源的学说,称为“星子学说”;同年,摩耳顿(F. R. Moulton)发展了这个学说,他认为曾经有一颗恒星运动到离太阳很近的距离,使太阳的正面和背面产生了巨大的潮汐,从而抛出大量物质,逐渐凝聚成了许多固体团块或质点,称为星子,进一步聚合成为行星和卫星。

现代的研究表明,由于宇宙中恒星之间相距甚远,相互碰撞的可能性极小,因此,摩耳顿的学说不能使人信服。由于所有灾变说的共同特点,就是把太阳系的起源问题归因于某种极其偶然的事件,因此缺少充分的科学依据。著名的中国天文学家戴文赛先生于1979年提出了一种新的太阳系起源学说,他认为整个太阳系是由同一原始星云形成的。这个星云的主要成份是气体及少量固体尘埃。原始星云一开始就有自转,并同时因自引力而收缩,形成星云盘,中间部分演化为太阳,边缘部分形成星云并进一步吸积演化为行星。

总的来说,关于太阳系的起源的学说已有40多种。本世纪初期迅速流行起来的灾变说,是对康德-拉普拉斯星云说的挑战;本世纪中期兴起的新的星云说,是在康德-拉普拉斯学说基础上建立起来的更加完善的解释太阳系起源的学说。人们对地球和太阳系起源的认识也是在这种曲折的发展过程中得以深化的。

至此,我们可以对形成原始地球的物质和方式给出如下可能的结论。形成原始地球的物质主要是上述星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法与戴文赛先生的结论一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。

至于原始的地球到底是高温的还是低温的,科学家们也有不同的说法。从古老的地球起源学说出发,大多数人曾相信地球起初是一个熔融体,经过几十亿年的地质演化历程,至今地球仍保持着它的热量。现代研究的结果比较倾向地球低温起源的学说。地球的早期状态究竟是高温的还是低温的,目前还存在着争论。然而无论是高温起源说还是低温起源说,地球总体上经历了一个由热变冷的阶段,由于地球内部又含有热源,因此这种变冷过程是极其缓慢的,直到今天地球仍处于继续变冷的过程中。

II 地球的演化:

地表的基本轮廓可以明显地分为两大部分,即大陆和大洋盆地。大陆是地球表面上的高地,大洋盆地是相对低洼的区域,它为巨量的海水所充填。大陆和大洋盆地共同构成了地球岩石圈的基本组成部分。因此,岩石圈的演化问题,也就是大陆和大洋盆地的构造演化问题。

大陆的起源和演化:

现在,绝大部分地球科学家都确认大陆漂移现象,并一致认为地球上海洋与陆地的结构分布和变化与大陆漂移运动直接相关。比较坚硬的地球岩石圈板块作为一个单元在其之下的地球软流圈上运动;由于岩石圈板块的相对运动,导致了大陆漂移,并形成了今天地球上的海洋和陆地的分布。地球岩石圈可分为大洋岩石圈和大陆岩石圈,总体上,前者的厚度是后者的一半,其中大洋岩石圈厚度很不均匀,最厚处可达80公里。

大部分大型的地球板块由大陆岩石圈和大洋岩石圈组成,但面积巨大的太平洋板块由单一的大洋岩石圈构成。地球上陆地面积约占整个地球面积的30%,其中约70%的陆地分布在北半球,并且位于近赤道和北半球中纬度地区,这很可能与地球自转引起的大陆岩块的离极运动有关。

在全球范围内,分布在大陆附近的大陆壳岛屿几乎全部位于大陆的东海岸一侧,个别一些大陆东部边缘,则被一连串的大陆壳岛屿构成的花彩状岛群所环绕,形成了显著的向东凸出的岛弧。这种全球大陆壳岛屿的分布特征,可以用岩石圈板块的普遍向西运动和边缘海底的扩张理论来加以解释。长期以来,人们就注意到地表上的某些大陆构造能够拼合在一起,这就好像是一个拼板玩具,特别是非洲的西海岸与南美洲的东海岸之间的吻合性最为明显。这种现象可以用大陆岩石圈的直接破裂和大陆岩块体的长期漂移得到解释。这就是我们后面将要介绍的关于杜托特提出的现今的大陆是由北半球的劳亚古陆和南极洲附近的冈瓦纳古陆的破裂后漂移形成的。

1966年,梅纳德(H. W. Menard)等汇集了当时所有的有关海洋深度的探测资料,再度进行了世界海洋深度的统计,得到全球陆地在海平面以上的平均高程为0.875公里,大洋的平均深度为3.729公里。大陆和大洋之间存在为海水所淹没的数拾公里宽的边缘地带,这个地带包括大陆架和大陆坡,两者共占地球表面积的10.9%。大陆地壳和大洋地壳的差异非常明显,大陆地壳的化学成份主要是花岗岩质,而大洋盆地下的岩石主要是由玄武岩或辉长岩构成。因此,整个地壳又可以分为大陆硅铝壳和大洋硅镁壳两大类型。

有关大陆的起源问题,地质和地球物理学家杜托特(A.L.Du Toit)于1937年在他的《我们漂移的大陆》一书中提出了地球上曾存在两个原始大陆的模式。如果这个模式成立,那么这两个原始大陆分别被称为劳亚古陆(Lanrasia)和冈瓦纳古陆(Gondwanaland);这实际上就象以前魏格纳等人所主张的那样,把全球大陆只拼合为一个古大陆。杜托特认为,两个原始大陆原来是在靠近地球两极处形成的,其中劳亚古陆在北,冈瓦纳古陆在南,在它们形成以后,便逐渐发生破裂,并漂移到今天大陆块体的位置。

早在19世纪末,地质家学休斯(E. Suess)已认识到地球南半球各大陆的地质构造非常相似,并将其合并成一个古大陆进行研究,并称其为冈瓦纳古陆,这个名称源于印度东中部的一个标准地层区名称(Gondwana)。冈瓦纳古陆包括现今的南美洲、非洲、马达加斯加岛、阿拉伯半岛、印度半岛、斯里兰卡岛、南极洲、澳大利亚和新西兰。它们均形成于相同的地质年代,岩层中都存在同种的植物化石,被称为冈瓦纳岩石。杜托特用以证明劳亚古陆和冈瓦纳古陆的存在和漂移的主要证据,是来自地质学、古生物学和古气候学方面。根据三十多年中积累起来的资料,有力地证明冈瓦纳古陆的理论基本上是正确的。

劳亚古陆是欧洲、亚洲和北美洲的结合体,这些陆块即使在现在还没有离散得很远。劳亚古陆有着很复杂的形成和演化历史,它主要由几个古老的陆块合并而成,其中包括古北美陆块、古欧洲陆块、古西伯利亚陆块和古中国陆块。在晚古生代(距今约3亿年前)这些古陆块逐步靠扰并碰撞,大致在石炭纪早中期至二叠纪(即2亿至2亿7千万年前)才逐步闭合。古地质、古气候和古生物资料表明,劳亚古陆在石炭~二叠纪时期位于中、低纬度带。在中生代以后(即最近的1-2亿年间)劳亚大陆又逐步破裂解体,从而导致北大西洋扩张形成。研究表明,全球新的造山地带的形成和分布,都是劳亚古陆和冈瓦纳古陆破裂和漂移的构造结果。在这过程中,大陆岩块的不均匀向西运动和离极运动的规律十分明显。总的看来,劳亚古陆曾位于北半球的中高纬度带,冈瓦纳古陆则曾一度位于南半球的南极附近;这两个大陆之间由被称为古地中海(也称为特提斯地槽)的区域所分隔开。

龙卷风[1](Tornado)是在极不稳定天气下,由两股空气强烈对流运动而产生的一种伴随着高速旋转的漏斗状云柱的强风涡旋。 龙卷风外貌奇特,它上部是一块乌黑或浓灰的积雨云,下部是下垂着的形如大象鼻子的漏斗状云柱,风速一般每秒50米至100米,有时可达每秒300米。由于龙卷风内部空气极为稀薄,导致温度急剧降低,促使水汽迅速凝结,这也是形成漏斗云柱的重要原因。 龙卷风由雷暴云底伸展至地面的漏斗状云(龙卷)产生的强烈的旋风,其风力可达12级以上,最大可达100米每秒以上,一般伴有雷雨,有时也伴有冰雹。 空气绕龙卷的轴快速旋转,受龙卷中心气压极度减小的吸引,近地面几十米厚的一薄层空气内,气流被从四面八方吸入涡旋的底部,并随即变为绕轴心向上的涡流。龙卷中的风总是气旋性的,其中心的气压可以比周围气压低百分之十,一般可低至400hPa,最低可达200hPa。龙卷风具有很大的吸吮作用,可把海(湖)水吸离海(湖)面,形成水柱,然后同云相接,俗称“龙取水”。 编辑本段 形成  龙卷风这种自然现象是云层中雷暴的产物。具体的说,龙卷风就是雷暴巨大能量中的一小部分在很小的区域内集中释放的一种形式。龙卷风的形成可以分为四个阶段: (1)大气的不稳定性产生强烈的上升气流,由于急流中的最大过境气流的影响,它被进一步加强。 (2)由于与在垂直方向上速度和方向均有切变的风相互作用,上升气流在对流层的中部开始旋转,形成中尺度气旋。 (3)随着中尺度气旋向地面发展和向上伸展,它本身变细并增强。同时,一个小面积的增强辅合,即初生的龙卷在气旋内部形成,产生气旋的同样过程,形成龙卷核心。 (4)龙卷核心中的旋转与气旋中的不同,它的强度足以使龙卷一直伸展到地面。当发展的涡旋到达地面高度时,地面气压急剧下降,地面风速急剧上升,形成龙卷。 编辑本段 特点 海龙卷龙卷风是大气中最强烈的涡旋现象,影响范围虽小,但破坏力极大。它往往使成片庄稼、成万株果木瞬间被毁,令交通中断,房屋倒塌,人畜生命遭受损失。龙卷风的水平范围很小,直径从几米到几百米,平均为250米左右,最大为1千米左右。在空中直径可有几千米,最大有10千米。极大风速每小时可达150千米至450千米,龙卷风持续时间,一般仅几分钟,最长不过几十分钟,但造成的灾害很严重。 龙卷风常发生于夏季的雷雨天气时,尤以下午至傍晚最为多见。袭击范围小,龙卷风的直径一般在十几米到数百米之间。龙卷风的生存时间一般只有几分钟,最长也不超过数小时。风力特别大。破坏力极强,龙卷风经过的地方,常会发生拔起大树、掀翻车辆、摧毁建筑物等现象,有时把人吸走,危害十分严重。 编辑本段 类型  1.真正的龙卷 (1)多漩涡龙卷风指带 龙卷风(17张)有两股以上围绕同一个中心旋转的漩涡的龙卷风。多漩涡结构经常出现在剧烈的龙卷风上,并且这些小漩涡在主龙卷风经过的地区上往往会造成更大的破坏。 (2)水龙卷(或称海龙卷,英文:waterspout)。可以简单地定义为水上的龙卷风,通常意思是在水上的非超级单体龙卷风。世界各地的海洋和湖泊等都可能出现水龙卷。在美国,水龙卷通常发生在美国东南部海岸,尤其在佛罗里达南部和墨西哥湾。水龙卷虽在定义上是龙卷风的一种,不过其破坏性要比最强大的大草原龙卷风小,但是它们仍然是相当危险的。水龙卷能吹翻小船,毁坏船只,当吹袭陆地时就有更大的破坏,并夺去生命。当水龙卷很可能产生或在海岸水域上已经看得见的时候,美国国家气象局(National Weather Service)将会经常发出特殊的海上警告,或者当水龙卷会向陆地移动时发出龙卷风警告。龙吸水:龙卷风的别名。龙卷风,因为与古代神话里从波涛中窜出、腾云驾雾的东海蛟龙很相象而得名,它还有不少的别名,如“龙吸水”、“龙摆尾”、“倒挂龙”等等。 龙卷风在水面上就是龙吸水、在陆地上就是普通的龙卷风。龙卷风就是空气的流动,空气是看不到的。我们只所以看的到是因为龙卷风中心气压底,有吸引力。吸引灰尘、水汽等其他杂物。所以看出了龙卷风的轮廓,如果龙卷风移动经过水面,龙卷风中心就像注射器一样把水吸上天。由于重力,液态水不可能长时间在天上。所以 龙吸水 过后,吸到天上的水就会落下来。就形成了雨,而且是暴雨。所以说所谓龙吸水就是龙卷风。龙吸水,很形象 的形容了这一现象。 深圳蛇口双龙吸水龙吸水是一种偶尔出现在温暖水面上空的龙卷风,它的上端与雷雨云相接,下端直接延伸到水面,一边旋转,一边移动。这是一种涡旋,空气绕龙卷的轴快速旋转。受龙卷中心气压极度减小的吸引,水流被吸入涡旋的底部,并随即变为绕轴心向上的涡流。 龙卷风将湖或海里的水卷入空中,形成高高的水柱,水柱水如同被吸入空中一样,俗称“龙吸水”,也称“龙卷水”。远远看去,被龙卷风卷上空中的水柱不仅很像吊在空中晃晃悠悠的一条巨蟒,而且很像一个摆动不停的大象鼻子。 2007年9月3日,江川星云湖出现了“龙吸水”奇观,经媒体报道,引起了社会各界的广泛关注。沿湖的村民们普遍认为,“龙吸水”是一种常见的自然现象,出现多的年份雨水都比较多,但也有一些神奇现象难以解释。江川县路居镇石岩哨村村民李建贵六七岁就开始打渔,现年47岁,他告诉笔者,“龙吸水”现象他见得太多了,但是,9月3日这样神奇的景观不多见。 2009年8月3日,栖霞市境内的长春湖面上出现“龙吸水”景观。当天16时许,长春湖面上突然腾起一条参天水柱,顷刻间大雨倾盆。 2009年10月4日早晨7:30,渤海湾海面惊现3条龙吸水壮观景象。它们将大量海水吸到空中,随后带来雷阵雨。 渤海湾龙吸水2009年8月23日上午,早上9点半多行至洱海边时,天气骤变,水面上空乌云密布,一条水柱似苍龙出海般连于海天之间。由于洱海上空的浓积云发展旺盛,上下对流运动加剧,温差增大,所以形成此奇观。 2010年7月27日早上9点多,在香港和深圳之间海域出现了罕见的龙卷风,在海面上形成了难得一见的3条龙吸水景观。 2010年09月06日早上,淅淅沥沥的雨中,一条“蛟龙”自苍茫的天际坠入湖水……这一听来犹如神话的故事,真实地发生在位于青藏高原、湖面海拔3200米的青海湖。9月1日,青海湖两次显现龙吸水气象景观,高原神湖再添奇异色彩。 (3)陆龙卷(英文:landspout,美国国家气象局称dust-tube tornado)是一个术语,用以描述一种和中尺度气旋没有关联的龙卷风。陆龙卷和水龙卷有一些相同的特点,例如强度相对较弱、持续时间短、冷凝形成的漏斗云较小且经常不接触地面等。虽然强度相对较弱,但陆龙卷依然会带来强风和严重破坏。 (4)火龙卷,非常罕见的龙卷风形态,由陆龙卷与火焰的结合。 巴西火龙卷[2]2010年,位于南半球的巴西遭遇罕见的干旱少雨天气,全国多地燃起了山火。8月24日,巴西圣保罗市一处火点刮起了龙卷风,形成了罕见的火焰龙卷风景观。龙卷风夹起火焰高达数米,像一条巨大的火龙旋转前进。这条“火龙风”于24日被拍摄到。“火龙”在燃烧的田野上飞舞高约数米高,阻断了一条公路。为了熄灭这条“火龙”,当地出动了直升机。 出现“火龙风”的地区已经有3个月没有下雨。异常干旱的天气和强劲的风势助长了此处的火势。巴西全球电视台报道称,圣保罗地区的空气干燥程度已赶上了萨哈拉沙漠。 2.类似龙卷的现象(1)阵风卷(英文:gustnado)是一种和阵风锋与下击暴流有关的小型垂直方向旋转的气流。由于它们严格来说和云没有关联,所以就它们是否属于龙卷风还存有争议。当从雷暴中溢出的快速移动干冷气流流经溢出边缘的静止暖湿气流时,会造成一种旋转的效果(可用“滚轴云”解释),若低层的风切变够强,这种旋转就会水平(或倾斜)进行,并影响到地面,最终的结果就是阵风卷。阵风卷的旋转方向不固定,可顺时针亦可逆时针。 (2)尘卷(英文:dust devil)也是一种柱状的垂直旋转气流,因此和龙卷风很像。然而,它们生成在晴朗的天气下,并且绝大多数情况下比最弱的龙卷风还要弱。气温较高时,如果地面因高温形成很强的上升气流,并且此时有足够的低层风切变,上升的热气流就可能做小范围的气旋运动,此时尘卷便会形成。尘卷之所以不属于龙卷风是因为它们在晴朗的天气条件下形成而且和云没有什么联系。不过,它们偶尔也能引起大的破坏,尤其在干燥地区。龙吸水,龙卷风的别名,是在极不稳定天气下由空气强烈对流运动而产生的一种伴随着高速旋转的漏斗状云柱的强风涡旋,其中心附近风速可达100m/s~200m/s,最大300m/s,比台风(产生于海上)近中心最大风速大好几倍。其破坏性极强。龙吸水 龙卷风在水面上空形成“龙吸水”。 龙卷风在海面上盛夏季节,当你收听台风天气预报的时候,经常可以听到“台风中心附近风力在12级以上”这样的话,似乎“12级”就是风力之“最”了。自然界中有比这更大的风吗?有,那就是龙卷风。 龙卷风俗称“龙吸水”,这也许是它漏斗状云柱的外形很像神话中的“龙”从天而降,把水吸到空中而得名的吧。实际上,它是从雷雨云底伸向地面或水面的一种范围很小而风力极大的强风旋涡。 龙卷风的风力极大。在龙卷风中心附近,水平风速每秒可达100米以上,极端情况,可达300米。12级风的风速相当于每秒30多米,要和龙卷风相比自然就大为逊色了。如此罕见的巨大的风,造成的破坏异常惊人。当它触及地面时,可以把人畜像开玩笑似的卷到空中,再扔下来,它可以“倒拔垂杨柳”,摧毁建筑物,甚至像利剑似的把坚固的高楼大厦削掉一角。1956年 9月24日,上海曾出现过一次龙卷风,它竟然把一个三四层楼高的110吨的储油罐举到15米的空中,然后把它甩到100多米以外的地方。1925年美国曾出现过一次强大的龙卷风,造成2000多人伤亡。为什么龙卷风的风力这么大呢?主要是龙卷风内的空气大量逸散,使龙卷风中心空气十分稀薄,气压很低,与外围空气的气压差特别大。台风中心和它外围空气平均每100公里差20毫巴(压强单位),而龙卷风中心与外围空气只要相差20米,气压差就达20毫巴。气压梯度越大,风力也就越大,难怪龙卷风的风力要比台风大上好多倍了。 龙卷风涉及的范围很小 。 1927年美国北卡罗来纳州的一次龙卷风,在它经过的 15平方米的范围内,大树连根拔起, 靠近这股龙卷风的地方则安然无恙。 双龙吸水 2011年5月3日,夏威夷州檀香山海港出现“双龙吸水”的罕见景观。两条巨大的水柱从海面一直延伸到高空,周围不断电闪雷鸣,并且大雨滂沱。很多路人被这种姊妹龙卷风的罕见奇观吸引住,纷纷停下车来观看。这种恶劣天气引发洪水,电击导致6万家庭停电长达2小时,不过这并未造成人员伤亡。学生肖恩雷·所罗门说:“我看到闪电从我的寝室附近划过。它就像一根紫色绳索从天空垂下来。”这两条海上龙卷风持续了大约12分钟,此类天气现象在夏威夷实属罕见。 美国夏威夷的双龙吸水龙卷风奇观(5张) 旋风在河流、湖泊或者海面上发生时,就会形成龙卷风。大气里的冷空气团经过水体时,温暖的潮湿气体向上升腾,形成巨大的水柱——一个由雾霭和冷凝液构成的“城堡”。这些宏伟壮观的水柱从海面上掠过时,它们会留下一条由水汽形成的尾迹。水柱的直径从几英尺到数百英尺不等,长超过1英里(1.61公里),深入到云团深处。海上龙卷风比旋风更微弱,往往只有它们从陆地上经过时,才会对人构成威胁。3日的“双龙吸水”奇观在下午大约5时50分出现,缓慢向西移动一会后就消失不见了。 随着太阳西沉,雨越下越大,闪电也逐渐增强。据称毛伊岛下起豌豆大小的冰雹。檀香山( Honolulu County)发出洪水预警,据《檀香山报》说,消防人员答复了遭洪水袭击的家庭打来的大约12通电话。怀厄奈的一个家庭说,闪电击中他们的无线电天线,电流顺着电线进入室内,引起火花和爆炸,烧坏了他们的扬声器。据国家气象局天气预报员约翰·布拉文德说,5月4日还会继续出现不稳定的气团。他对《檀香山报》说:“我们将会再次看到雷暴天气,但是不会像5月3日的影响范围那么大。”[3] 编辑本段 危害  1995年在美国俄克拉何马州阿得莫尔市发生的一场陆龙卷,诸如屋顶之类的重物被吹出几十英里之远。大多数碎片落在陆龙卷通道的左侧,按重量不等常常有很明确的降落地带。较轻的碎片可能会飞到300多千米外才落地。 在强烈龙卷风的袭击下,房子屋顶会像滑翔翼般飞起来。一旦屋顶被卷走后,房子的其他部分也会跟着崩解。因此,建筑房屋时,如果能加强房顶的稳固性,将有助于防止龙卷风过境时造成巨大损失。 龙卷的袭击突然而猛烈,产生的风是地面上最强的。在美国,龙卷风每年造成的死亡人数仅次于雷电。它对建筑的破坏也相当严重,经常是毁灭性的。 1626年5月30日(明熹宗天启六年五月初六)上午9时许,北京城内王恭厂( 今北京市宣武门一带)周围突然爆发了一场奇异的灾变,明代有重要史料价值的官方新闻通讯刊物《天变邸抄》对此灾有详尽的记载,摘录如下:“蓟州城东角震坍,坏屋数百间,是州离京一百八十里。初十日,地中掘出二人,尚活。问之,云:‘如醉梦’。又掘出一老儿,亦活。”在王恭厂奇灾中,是什么力量能使三个人从北京到蓟州飞行飘达一百八十里皆落地不死?是什么力量能极快地剥去人衣送到几百里外而又能不伤人?为什么被脱衣者竟不知自己的衣服是如何被脱光的呢?这其中一定有某种必然性因素在起作用,然而这种必然性因素今后能被人类所认识吗?这种神奇的力量今后能被人类所掌握、控制和利用吗? 在1999年5月27日,美国得克萨斯州中部,包括首府奥斯汀在内的 4个县遭受特大龙卷风袭击,造成至少32人死亡,数十人受伤。据报道,在离奥斯汀市北部40英里的贾雷尔镇,有50多所房屋倒塌,已有30多人在龙卷风丧生。遭到破坏的地区长达1英里,宽200码。这是继5月13日迈阿密市遭龙卷风袭击之后,美国又一遭受龙卷风的地区。 一般情况下,龙卷风是一种气旋。它在接触地面时,直径在几米到1公里不等,平均在几百米。龙卷风影响范围从数米到几十上百公里,所到之处万物遭劫。龙卷风漏斗状中心由吸起的尘土和凝聚的水气组成可见的“龙嘴”。在海洋上,尤其是在热带,类似的景象在发生称为海上龙卷风。 沙洲的龙卷风大多数龙卷风在北半球是逆时针旋转,在南半球是顺时针,也有例外情况。卷风形成的确切机理仍在研究中,一般认为是与大气的剧烈活动有关。 从19世纪以来,天气预报的准确性大大提高,气象雷达能够监测到龙卷风、飓风等各种灾害风暴。 龙卷风通常是极其快速的,每秒钟100米的风速不足为奇,甚至达到每秒钟175米以上,比12级台风还要大五、六倍。风的范围很小,一般直径只有25~100米,只在极少数的情况下直径才达到一公里以上;从发生到消失只有几分种,最多几个小时。 龙卷风的力气也是很大的。1956年9月24日上海曾发生过一次龙卷风,它轻而易举地把一个22万斤重的大储油桶“举”到15米高的高空,再甩到120米以外的地方。 1879年5月30日下午4时,在堪萨斯州北方的上空有两块又黑又浓的乌云合并在一起。15分钟后在云层下端产生了旋涡。旋涡迅速增长,变成一根顶天立地的巨大风柱,在三个小时内像一条孽龙似的在整个州内胡作非为,所到之处无一幸免。但是,最奇怪的事是发生在刚开始的时候,龙卷风旋涡横过一条小河,遇上了一座峭壁,显然是无法超过这个障碍物,旋涡便折抽西进,那边恰巧有一座新造的75米长的铁路桥。龙卷风旋涡竟将它从石桥墩上“拔”起,把它扭了几扭然后抛到水中。 编辑本段 龙卷风的分级  龙卷风按它的破坏程度不同,分为0--6增强藤田级数,简单来说就称为EF级,由1971年芝加哥大学的藤田博士所提出。 EF0级:每小时100公里--140公里,可以把树枝、烟囱和路标吹跑,把较轻的碎片刮起来击碎玻璃,这种级数的龙卷风破坏程度较轻,我们称之为温柔龙卷风。 EF1级:每小时141公里--190公里,可以把屋顶卷走,活动板房被吹翻,汽车刮出路面,这种级数的龙卷风破坏程度中等,我们称之为中等龙卷风。 EF2级:每小时191公里--260公里,可以把把沉重的甘草包吹出去几百米远,把汽车吹翻,把大树连根拔起,屋顶和墙壁一起被吹跑,这种级数的龙卷风破坏程度较大,我们称之为较大龙卷风。 EF3级:每小时261公里--320公里,可以把房顶、墙壁和家具一起卷走,汽车全部脱离地面,货车、列车、火车全部脱轨并卷走,树木都被连根拔起,这种级数的龙卷风破坏程度严重,我们称之为严重龙卷风。 EF4级:每小时321公里--430公里,把汽车卷走,把一间牢固的房子夷为平地,这种级数的龙卷风破坏程度非常严重,我们称之为破坏性龙卷风。 EF5级:每小时431公里--520公里,大型建筑物也能刮起,汽车被刮飞,树木刮飞,所有家具都变成了致命导弹,这种级数的龙卷风破坏程度是毁灭性的,我们称之为毁灭性龙卷风。 EF6级;每小时521公里--600公里,列车、货车和火车被刮飞,汽车喷射出几公里,路面上的沥青被刮走,这种级数的龙卷风破坏程度是末日性的,我们称之为末日性龙卷风。 编辑本段 龙卷风“走廊” 简介 卷风走廊地带从落基山脉延伸到阿巴拉契山脉,平均每年这里会形成1000次龙卷风,风速则达到500公里/小时,沿途经过的农田、房屋、人和牲畜都被摧毁殆尽。俄克拉荷马城和塔尔萨之间44号州际公路沿线被称为“I - 44龙卷风走廊”,这里居住的100多万居民已经习惯了每年的龙卷风季节。每年春季,当来自落基山脉的干燥冷空气经过这片低地平原,与来自墨西哥湾沿岸的潮湿热空气相遇,龙卷风便如期而至。 龙卷风“走廊”----历史危害 自1890年以来,前后共有120多场龙卷风袭击了俄克拉荷马城及周边地区。1999年5月3日的一场龙卷风席卷俄克拉荷马城周围地区, 1700座家园夷为平地,6500处建筑遭到破坏。俄克拉荷马城东北同一沿道上的大部分地区也常受到龙卷风袭击。在人口59.00万的塔尔萨小城,1950年至2006年间共遭遇了69场龙卷风。此外,塔尔萨建立在阿肯色河边,这里是由一系列小溪冲积而成的平原,在大雨的恶劣天气还很容易遭到洪水袭击。1974年、1976年和1984年三次大规模洪水灾害造成了数十万美元的损失。 龙卷风“走廊”----危险之旅 2010年7月5日消息,如果你厌倦了沙滩度假,在这个夏天想要寻找不同一般的体验,那建议你考虑到美国中西部旅行。“风暴追逐者”Roger Hill和Caryn Hill夫妇为敢于冒险的游客提供追逐龙卷风的旅游服务。他们会带上18人的团分乘3辆大巴在美国“龙卷风走廊”进行10日游,游客每天需支付的费用是30美元。“龙卷风走廊”从落基山脉延伸到阿巴拉契山脉,平均每年这里会形成1000次龙卷风,风速则达到500公里/小时,沿途经过的农田、房屋、人和牲畜都被摧毁殆尽。自2000年以来,这对夫妇已经带过近1500人到中西部近距离观看龙卷风。 龙卷风“走廊”越刮越宽 2010年12月,美国科学家发现,美国南部各州的许多地方可能比堪萨斯州更容易形成龙卷风。通过统计除阿拉斯加州之外的美国本土48个州,从1950年到2007年每平方公里的龙卷风发生率,密西西比州立大学的地球科学家P. Grady Dixon与同事确定了在密西西比州中南部和阿肯色州中部的一大片区域中的一些地区(在图中用橙色和深红色表示的区域),每年至少有一次龙卷风在其境内经过25英里的距离。这种比例类似于在大平原上的龙卷风热点地区出现的情况。与传统上被认为位于龙卷风走廊中心区域的许多地方相比,密西西比州史密斯县的一些地方——这里是美国历史上受龙卷风影响最严重的区域——发生龙卷风的几率要高出约35%。 研究小组指出,将包含这些地区的龙卷风危险地图扩大将提高公众的认识,并加大努力以减少龙卷风造成的损失。 龙卷风“走廊”死亡之路 在美国中西部的龙卷风走廊,每年都会爆发1000多次龙卷风,在那里,时速500公里/小时的龙卷风疯狂前进,只要走进这里,你很可能因为龙卷风抛出的致命武器、天空砸下的大冰雹或温度极高的闪电而丧命,所以,最好旅游不要去龙卷风走廊。 编辑本段 防范  (1) 在家时,务必远离门、窗和房屋的外围墙壁,躲到与龙卷风方向相反的墙壁或小房间内抱头蹲下。躲避龙卷风最安全的地方是地下室或半地下室。 龙卷风 神奇的大自然(2) 在电杆倒、房屋塌的紧急情况下,应及时切断电源,以防止电击人体或引起火灾。 (3) 在野外遇龙卷风时,应就近寻找低洼地伏于地面,但要远离大树、电杆,以免被砸、被压和触电。 (4) 汽车外出遇到龙卷风时,千万不能开车躲避,也不要在汽车中躲避,因为汽车对龙卷风几乎没有防御能力,应立即离开汽车,到低洼地躲避。 编辑本段 探测  龙卷风长期以来一直是个谜,正是因为这个理由,所以有必要去了解它。龙卷风的袭击突然而猛烈,产生的风是地面最强的。由于它的出现和分散都十分突然,所以很难对它进行有效的观测。 龙卷风的风速究竟有多大?没有人真正知道,因为龙卷风发生至消散的时间短,作用面积很小,以至于现有的探测仪器没有足够的灵敏度来对龙卷风进行准确的观测。相对来说,多普勒雷达是比较有效和常用的一种观测仪器。多普勒雷达对准龙卷风发出的微波束,微波信号被龙卷风中的碎屑和雨点反射后重被雷达接收。如果龙卷风远离雷达而去,反射回的微波信号频率将向低频方向移动;反之,如果龙卷风越来越接近雷达,则反射回的信号将向高频方向移动。这种现象被称为多普勒频移。接收到信号后,雷达操作人员就可以通过分析频移数据,计算出龙卷风的速度和移动方向。 编辑本段 美国龙卷风灾害  2012年3月2日[4],美国南部亚拉巴马州与田纳西州遭遇龙卷风袭击,当天至少两个龙卷风袭击了该州东北部地区。这两个龙卷风在当地时间上午9时至9时30分左右分别袭击了亨茨维尔,间隔大约10分钟。在亚拉巴马州,龙卷风损坏了不少房屋、刮到不少树木,已经造成至少4人受伤。 在距离亨茨维尔大约16公里处的卡普肖,亚拉巴马州立莱姆斯通监狱也在龙卷风袭击中受损。这座监狱是一座最高安全等级监狱,关有2100名犯人,其中有大约200人HIV呈阳性,被隔离关押。 亚拉巴马监狱尽管狱舍在龙卷风中受损,但没有犯人趁此越狱。监狱有一段外墙和两处狱舍受损,但监狱本身仍然安全。 除了亚拉巴马州,田纳西州查塔努加地区遭到龙卷风袭击,造成超过20人受伤。当地汉密尔顿县治安官办公室确认当地有多人因极端天气受伤,布拉德利县政府也确认当地有房屋受损。 一个巨大的风暴系统正在美国东西部与南部地区肆虐。这一风暴系统从2012年2月28日开始已在多个州造成龙卷风,并导致堪萨斯、密苏里、伊利诺伊和田纳西州等地13人死亡。

关于“风电场电气选择对环境因素的考虑有哪些方面”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[盼蕾]投稿,不代表海宁号立场,如若转载,请注明出处:https://hnjsjm.com/hainin/1097.html

(13)
盼蕾的头像盼蕾签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 盼蕾的头像
    盼蕾 2025年08月25日

    我是海宁号的签约作者“盼蕾”

  • 盼蕾
    盼蕾 2025年08月25日

    本文概览:网上有关“风电场电气选择对环境因素的考虑有哪些方面”话题很是火热,小编也是针对风电场电气选择对环境因素的考虑有哪些方面寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在...

  • 盼蕾
    用户082505 2025年08月25日

    文章不错《风电场电气选择对环境因素的考虑有哪些方面》内容很有帮助