网上有关“南海西部深海平原SA-岩心浊流沉积特征”话题很是火热,小编也是针对南海西部深海平原SA-岩心浊流沉积特征寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
陈芳 李学杰 刘坚 陆红锋 王金莲 张欣 廖志良 陈超云
(广州海洋地质调查局 广州 510760)
第一作者简介:陈芳,1966年生,教授级高工,主要从事海洋微体古生物学、沉积学研究。
摘要 本文对位于南海西部深海平原的 SA14-34 岩心进行详细的沉积物组分研究,结果表明:该岩心岩性复杂多变,沉积了粘土、粉砂质粘土、砂质粘土、粘土质粉砂、砂质粉砂、砂和粉砂质砂等7种沉积物类型。浊流沉积发育,至少已识别出4个特征明显的浊流层。浊流层厚度为18~120cm,具有粒度较粗呈下粗上细、异地钙质微体生物化石丰富、陆源碎屑矿物含量高、SiO2/Al2O3比值和CaCO3含量高四大特点。并对浊流沉积的物质来源、成因进行了初步分析,认为浊积物主要来自西部陆架-陆坡区,有利的地形、丰富的物源和频繁的海底火山活动诱发的地震是浊流发生的主要原因。
关键词 浊流沉积 深海平原 南海西部
南海,作为西太平洋的边缘海,物源丰富,沉积速率高,且生物多样,是研究古气候、古海洋环境和现代沉积作用的场所,近20年来成为热点研究地区,取得了一系列成果。对南海的浊流沉积也进行了一些研究,相继在南海的北部、南部以及东北部发现了浊流沉积的记录[1~7]。南海西部海域由于其研究程度较低,有关浊流沉积的研究基本上空白。
1996—2002年期间,广州海洋地质调查局在实施国家“126”专项时,对南海西部浅表层沉积物进行系统取样。取样站位北起琼东南,南至巽它陆架,覆盖整个南海西部海域,包括陆架、陆坡和深海盆地。通过对浅表层沉积物开展沉积学的研究,在西部中南半岛外深海平原区发现大量的浊流沉积[8]。本文通过对南海西部深海盆典型SA14-34岩心的研究,分析其浊流沉积特征及其控制因素。
1 材料与方法
SA14-34岩心位于地形平缓的南海西南海盆西南角,西侧紧邻地形陡峭的西南海岭,地理坐标111°57′48〞E,11°36′25.3〞N,水深4137m(图1),柱长801cm。对该柱状沉积物以5~15cm间隔取样,对其进行粒度、矿物、钙质微体生物化石和地球化学等综合分析。
图1 SA14-34岩心位置图
Fig.1 Location of piston core SA14-34
粒度分析,大于0.063mm粒级采用筛析法,小于0.063mm粒级用比重计法。
碎屑矿物分析,称取定量干样(通常7 g),自来水浸泡,用孔径0.063mm和0.25mm的铜筛冲洗,选取0.063~0.25mm粒径样品,烘干,进行磁选和电磁选,分为磁性矿物、电磁性矿物和无磁性矿物,对无磁性进行淘洗,分重矿物和轻矿物,然后分别称该四部分质量,用实体显微镜鉴定,并统计其相对含量。
有孔虫、介形虫样品采用常规方法处理:称取10 g干样,用水浸泡,待充分松散后,用孔径0.063mm的铜筛冲洗烘干,鉴定并统计>0.15mm的个体,化石丰富的样品采用缩分鉴定。钙质超微化石样品处理采用简易涂片法。
地球化学分析,SiO2采用重量法,CaCO3采用容量法,A12O3用离子体光谱法。
上述分析均由广州海洋地质调查局实验测试所完成。
2 岩性特征
根据岩心肉眼观察、沉积物粒度和涂片发现,该岩心沉积特征不是以细粒沉积为主,粒度明显偏粗,岩性复杂多变,包含粘土、粉砂质粘土、砂质粘土、粘土质粉砂、砂质粉砂、砂、粉砂质砂等7种沉积物类型。沉积物组分以粘土矿物、长英矿物和风化矿物为主,其中长英矿物总体偏高,最高可达72%;钙质生物(主要由有孔虫和钙质超微化石组成)含量悬殊,从<1%~31%,多个层段含量偏高,在10%~31%间变化;而硅质生物(主要由硅藻和放射虫组成)含量偏低,一般<1%,在300~650cm含量增加,最高达10%(图2)。该岩心含多层粒度变化的正韵律层,其中大多钙质生物丰富,初步可识别出4层特征明显的浊流沉积:浊流层1(0~40cm),浊流层2(40~58cm),浊流层3(220~260cm)和浊流层4(653~773cm)。
图2 SA14-34岩心岩性、组分特征及浊流层系(数字1,2,3,4 代表浊流层,下同)
Fig.2 Lithologic feature,biogenic components and turbidite layers in core SA14-34
(numberl,2,3 stand for turbidite layer)
3 浊流沉积物特征
3.1 粒度特征
与上下正常深海沉积相比,浊流沉积物相对较粗,且浊流沉积物内自下而上粒度由粗变细,具有典型的正粒序沉积层序——浊流沉积物的显著标志。
浊流层1,从上而下依次为含钙质生物砂质粘土(0~12cm)、粘土质粉砂(12~25cm)、粉砂质砂(25~40cm);
浊流层2,从上而下依次为粉砂质粘土(40~45cm),含钙质生物粉砂质砂(45~58cm);
浊流层3,底部为砂,向上递变为砂质粉砂、粉砂质粘土;
浊流层4,从上而下依次为粉砂质粘土和粘土质粉砂。
下面仅以浊流层3(220~260cm)为例(图3),剖析其粒度特征。
图3 SA14-34岩心浊流层3(220~260cm)粒度特征
Fig.3 The feature of grain of turbidite layer 3(220~260cm)
220~226cm,粘土,其中砂含量为1.3%,粉砂为48.5%,粘土为50.2%;
226~235cm,砂质粉砂,平均砂含量为35.0%,粉砂为54.0%,粘土为11%;
235~260cm,砂,砂含量为78.9%~79.4%,粉砂14.1%~14.9%,粘土6.2%~6.5%。自上而下,沉积物中值粒径由小变大,由顶部粉砂质粘土的6~7μm逐渐增大至底部砂的110μm左右,沉积物由细变粗,由下向上,分别相当于鲍马序列的A,B,D,E层。
3.2 微体古生物特征
SA14-34岩心取样位置位于碳酸盐临界补偿深度(CCrD)以下,碳酸盐溶解作用强烈,附近站位沉积物中钙质生物强烈溶失,丰度很低,一般为1~50个/g。但浊积物中的钙质生物化石有孔虫、介形虫和钙质超微化石尤其丰富,以高丰度区别于上下正常深海沉积,硅质生物放射虫、硅藻则不发育,该特征在浊流层1,2,3中表现明显(图4)。
图4 SA14-34岩心钙质生物丰度变化
Fig.4 Abundance of calcareous microfossils in core SA14-34
浊积沉积中有孔虫浮游类易溶种与抗溶种共存,抗溶等级由2级到7级的浮游有孔虫(据Berger,1979)同时出现;底栖类浅水种和深水种混杂,以浅水种为主。浊积物中有孔虫丰度一般为几百个/克,最高1900个/克,分异度20~39;而该岩心正常深海沉积物的有孔虫丰度只有几~十几个/克。以浊流层1为例,有孔虫丰度300~1900个/克,分异度 29~39,自下而上,丰度下降。浮游有孔虫常见有 Globigerinoides ruber,Gs.quadrilobatus,Gs.sacculifer,Neogloboquadrina dutertrei,N.pachyderma,pulleniatina obliquiloculata,Globorotalia menardii,Gr.inflata,Globigerinella aequilateralis,Gg.bulloides,Gg.rubescens等;底栖类有孔虫以玻璃质壳最多,其次为瓷质壳,胶结壳最少。常见种有 Elphidium jeseni,Cibicides refulgens,Quinqueloculina seminula,Psuodoeponides japonicus,Nonionella decora,Bolivina robusta,Bolivina earlandi,Bulimina marginata,等。还具有 Cibicides refulgens C.tanis,Pseudorotalia gaimardii,Elphidium jeseni,Han“a”aiaconcentrina,Uvigerina torquata,Virgulopsis orientalis,Quinqueloculina seminula,Quinqueloculina lamarckina等典型的浅水种。其他浊流沉积有孔虫组合面貌与第一层浊积物的相似。
与有孔虫相似,浊积沉积中介形虫亦相当丰富,但几乎全部为异地埋葬分子,以滨、浅海-半深海异地分子为主。前人对南海表层沉积物中介形虫的分布研究结果表明[5]:当水深大于4000m时,表层沉积物中的介形虫丰度在4个/10 g以下,种数不足1个,且全部为异地分子。而在浊流层1中介形虫丰度高达39~528个/10 g,分异度13~25,自下而上,数量减少。常见的有Iestoleberis guangdongensis,Lo”oconcha siensis,Cytheropteron minrensis,Hemicytherra cuneata,Munseyella japonica,Cornucoquimba tosaensis,Cytherlloideasabahensis,Leguminocythereis hodgii,Stigmatcythere dorsinoda等,其中Lo”oconcha sp.仅出现在800m水深的环境中,Cytheropteron minrensis在南海东北部分布在100~700m水深处,parabythocythere limata分布在800~1500m水深范围内,Krithe sa”anensis在南海东北部分布在700~3000m的海区。各层浊积物介形虫数量不等,这与浊流作用规模大小有关。浊流层2中的介形虫数量有所下降,丰度为28~77个/10 g,分异度13~25,少数介形虫如Cornucoquimba tosaensis,Aconthocythereis munechikai等只以幼虫出现。
3.3 陆源碎屑矿物特征
SA14-34岩心浊流沉积中的陆源碎屑矿物以含量特别高,矿物种类多而区别与上下正常深海沉积。浊流沉积中的陆源碎屑矿物以长石、石英为主,占50%~80%。此外,尚有黑云母、白云母、绿帘石、磁铁矿、褐铁矿、钛铁矿、独居石、锆石、角闪石等矿物,风化矿物含量明显增加。浊流层1、浊流层2中的长英矿物含量最高达50%;浊流层3长英矿物含量最高达72%;浊流层4长英矿物含量最高达67%(图2),其他层位长英矿物含量偏低,一般为6%~0%。在陆架和上陆坡广泛分布的海绿石在浊积物中普遍出现,浊流层1层段浊积物中的含量达1.0×10-4。而其他层位含量极低,几乎未见。镜下观察,浊流沉积中的石英具有两种明显不同的形态,大部分表面干净、透明,呈棱角状;部分表面具有雾痕、斑痕,呈次圆状,为搬运相互磨擦所造成;长石有些较新鲜,有些发生次生变化,说明浊流沉积物为近距离搬运。
3.4 地球化学特征
海洋沉积物中SiO2/Al2O3比值主要反映了沉积物中陆源碎屑和粘土的比例,该比值越高说明陆源碎屑含量越高,而CaCO3主要来自在海洋沉积物中的钙质生物有孔虫、钙质超微化石等,研究结果表明:该海域正常沉积的表层沉积物中的CaCO3含量一般为2%~5%。而SA14-34岩心浊流层1,2,3,4 中的SiO2/A12O3比值明显高于上下正常深海沉积,而浊流层1,2中的CaCO3明显高于下伏的正常深海沉积粘土层,最高可达8%,而下伏的正常深海沉积粘土层中的CaCO3含量<2%(图5)。
4 浊流沉积的物源、成因初探
根据浊积物组成特征,大体可以了解浊积物的物质来源。SA14-34岩心的浊积物主要由陆源碎屑和生物碎屑组成。从上述浊积物的矿物组合来看,与南海西部中南半岛外陆架、陆坡区的矿物组合具有明显的相似性;经浊流搬运的生物碎屑通常保存较差,壳面遭受不同程度的磨损,壳体的破碎率较高。但SA14-34岩心中的介形虫保存良好,壳薄、透明、干净,壳体很少出现破碎、磨损充填现象,这主要与浊流搬运距离较短,搬运速度较快有关,据此推测浊积物的矿物主要来自南海西部陆架、陆坡区。
图5 SA14-34岩心SiO2/Al2O3比值和CaCO3含量
Fig.5 Downhole Plots SiO2/Al2O3ratio,CaCO3(%)in core SA14-34
南海西部自西向东发育有陆架、陆坡和深海盆地(南海西南海盆的一部分)等地形地貌,其中陆架狭窄,陆坡陡峭,深海盆地平缓。由于主要受南北向和北东向断裂的作用和火山作用的影响,自西向东呈阶梯状下降,高差变化极大,由200m降至4000m。而SA14-34岩心则位于地形平坦的深海盆地边缘,即西南海盆的西南角,四周被海山所围绕,西面与地形陡峭的陆坡海山陡坡相邻,南面与东面为深海海山。这种四周高,中间低的地形为浊流形成、搬运和沉积提供了有利的地理条件;而周围大量松散沉积物堆积为浊流的形成提供了重要的物质基础;频繁的海底火山喷发引起的地震则诱发了区内浊流的发生。SA14-34岩心所在的深海盆地分布着众多的由海底火山喷发形成的海山和海丘,该区是Cu、Ba元素含量的高值区,沉积物中Cu、Ba元素的富集主要是受区内海底火山活动控制的[9],说明该区火山活动较强,为浊流的发生提供了动力条件。
5 结论
1)位于南海西部深海平原的SA14-34岩心岩性复杂多变,沉积了粘土、粉砂质粘土、砂质粘土、粘土质粉砂、砂质粉砂、砂和粉砂质砂等7种沉积物类型。浊流沉积发育,浊流沉积构成了该岩心的主体,至少已识别出4个特征明显的浊流层。
2)浊流沉积相对较粗,自下而上,主要由砂、粉砂和粉砂质粘土组成,沉积物中值粒径由小变大;浊流沉积中异地钙质生物化石有孔虫、介形虫富集。有孔虫浮游类易溶种与抗溶种共存,底栖类浅水种和深水种混杂,介形虫大部分为浅海-半深海类型,与正常深海组合完全不同;浊流沉积中的陆源碎屑矿物含量特别高,矿物种类多,以长石、石英为主。浊流沉积中SiO2/Al2O3比值、CaCO3含量相对偏高。
3)对浊流沉积的物质来源、成因初步分析表明:浊流沉积主要来自西部陆架-陆坡区,有利的地形、丰富的物源和频繁的海底火山活动诱发的地震是浊流发生的主要原因。
参考文献
[1]Damuth,J.E.Migrating sediment Waves created by turbidity currents in the northern South China Sea Basin.Geology,1979,7:520~530
[2]冯文科,薛万俊,杨达源等.南海北部晚第四纪地质环境.广州:广东科技出版社,1988
[3]王慧中.南海中沙环礁西南缘深部海流的若干沉积学标志.见:业治铮、汪品先主编,南海晚第四纪古海洋学研究,青岛:青岛海洋大学出版社,1992,206~217
[4]陈文斌.南海北部浊流沉积物初步认识.见:南海海洋沉积作用过程与地球化学研究.北京:海洋出版社,1993,124~135
[5]汪品先等.十五万年来的南海[M],上海:同济大学出版社,1995
[6]钱建兴.晚第四纪以来南海古海洋学研究.北京:科学出版社,1999,1~156
[7]章伟艳,张富元,张霄宇.南海东部海域柱状沉积物浊流沉积探讨.热带海洋学报,2003,22(3):36~42
[8]陈芳,李学杰,陈超云等.南海西部表层沉积钙质浮游生物分布与碳酸盐溶解.海洋地质与第四纪地质.2003,23(2):33~38
[9]蓝先洪,姚伯初,邱燕.南海西部海域表层沉积物中Ba/Cu 比值及分布特征.见:姚伯初等编,南海西部海域地质构造特征和新生代沉积.北京:地质出版社,1999,112~117
CharacteriSticS of Turbidity Current DepoSits of Core SA14-34 in Deep Sea BaSin ofthe WeStern South China Sea
Chen Fang Li Xuejie Liu Jian Lu Hongfeng Wangjin1ian ZhangXin Liaozhi1iang Chen Chaoyun
(Guangzhou Marine Geological Survey,Guangzhou,510760)
AbStract:Results based on visual core description,smear slide,microfossils,grain size,chemical and mineral analyses indicate turbidity current deposits have been developed in Core SA14-34,At least 4 layers of turbidities can be recognized.These layers,each 18~120cmthick,are characterized by turbidite sequence With graded bedding,abundant allochthonous calcareous microfossils and high SiO2/Al2O3ratio,high content of CaCO3and high contents of terrigenous detrital minerals.In addition,a preliminary analysis is made on the material source and origin of the turbidity current deposits.The authors suggest that the favorable topography,abundant source materials and earthquakes induced by repeatedly occurring submarine volcanic activities are the main causes for the occurrence of turbidity currents.
Key WordS:Turbidity current deposits Deep sea basin Western South China Sea
地球物理方法对海洋平台场址调查的应用与探讨
李舂垚 李子波 李春之 李峻东 李天杰 李江雄 李子云 李秉斌 李禾富 李冰溢 李金溯 李子铭 李全宣 李小存 李海羲 李坤可 李春林 李逸泷 李博檬 李程军 李斐纬 李友人 李国春 李嘉军 李文虎 李战君 李雨裕 李沛理 李海宇 李春初 李俊淳 李知深 李尔琼 李韫东 李乃轩 李中匀 李永水 李世渲 李涵昱 李耀营 李梓宁 李柏鑫 李飞琳 李文涛 李里焕 李小昊 李扩庭 李西森 李遇吉 李芊安 李攀国 李文明 李林东 李铁菡 李祉新 李飞景 李学杰 李子童 李子波 李得洪 李华俊 李国群 李祈泽 李恩雪 李瑞升 李任董 李梓文 李文宁 李胜杰 李业柳 李哲霖 李崇晋 李晓铭 李莉冉 李力智 李鸿渊 李大曦 李杞润 李雅镐 李艺非 李佳懿 李政营 李泳野 李耀亚 李庭佳 李泽荣 李西志 李继彬 李长申 李新铭 李桂郢 李思轩 李宝旭 李誉柔 李海霖 李彪斌 李兴军 李永强 李维炫 李雨八 李佳枫 李连成 李文光 李照明 李建昊 李伟涛 李昱阳 李鑫宇 李颖峰 李展乐 李清竣 李馨溥 李宝慈 李振涵 李永航 李乾骏 李熙瑞 李广杰 李少清 李中然 李耀祺 李威葵 李匀芯 李智伦 李连辉 李思海 李海辉 李运哲 李允晰 李兆东 李羽丫 李亚阳 李清雪 李海燕 李步君 李琪之 李楚城 李勇琼 李平江 李桐熳 李志涵 李鑫诚 李家宝 李枥杰 李节林 李剑皓 李恩吉 李逢斌 李厚圣 李若谆 李国伦 李吉祥 李怀丰 李泳洪 李达慧 李泽礼 李佩文 李德涵 李哲峰 李浩萱 李枢骏 李昊壮 李明颖 李旭旭 李丁文 李之磊 李太超 李治皓 李瑞小 李启宜 李东祥 李瀚刚 李羽坤 李紫轩 李元宁 李斯涛 李世龙 李茸立 李若誉 李启翼 李若旭 李振之 李边雄 李龙阳 李成权 李永希 李西海 李伟煌 李俊轩 李树浩 李林文 李浚泽 李博东 李麒呈 李晟宁 李子星 李诚涵 李柯阳 李雨锋 李建华
马胜中
(广州海洋地质调查局 广州 510760)
作者简介:马胜中,男,1968生,1990年毕业于中国地质大学(武汉),工程硕士,高级工程师,从事海洋环境地质、灾害地质和综合地质地球物理研究工作。E-mail:sz-m@163.com。
摘要 海洋石油钻井平台的安全就位和稳定施工,与井场区海底的工程地质条件密切相关。地球物理探测技术作为一门综合性较强的科学技术,在海洋工程地质和海洋灾害地质调查中有着不可替代的作用。实践证明,采用测深、侧扫声呐扫描、浅地层剖面、单道地震、高分辨率2D地震和海洋磁力测量等地球物理探测手段进行综合调查,对钻井平台场址周围海域的地形变化和潜在地质灾害因素,具有很好的揭示作用。
关键词 平台场址调查 海洋地球物理探测 海洋地质灾害
1 前言
随着我国经济的发展和战略储备的需要,我国原油勘探开发的重点由陆地逐渐转向海域。我国近海海底蕴藏着丰富的矿产资源,现已探明石油资源量达246×108 t,天然气15.79×1012m3,占全国油气总资源量的23%。然而在油气开发中,屡屡遭到海洋地质灾害的破坏,不均一的持力层多次造成渤海、珠江口盆地钻井平台的倾斜和位移,使国家蒙受重大经济损失。
钻井平台场址灾害调查在石油钻井之前进行,既要探测诸如断层、浅层气地层情况以应对钻井或采油时发生的井架倒塌、井喷、着火和溢油等灾害,又要调查与钻井平台基础有关的土工问题,以避免事故和灾害发生。据资料,1955~1980年间,美国每年发生钻井船基础严重破坏的事故3~4起,经济损失和人员伤亡巨大。海洋结构物场地调查是确定影响固定式平台和海底管线等工程结构物的设计、布局、施工及安全操作的工程地质条件。1969年,卡米尔飓风袭击密西西比河三角洲,引起海底大面积土体滑移,造成3个平台破坏,损失1亿多美元[1]。可见,海洋石油钻井平台场址调查研究在油井钻探开发中有着重要的作用。我国海洋石油开发工作起步较晚,直到20世纪80年代初,我国才真正开始海洋工程地质勘察工作,近十年来,我们对石油钻井平台场址调查研究做了许多实验工作,随着调查技术的不断进步,研究正向深海挺进。
海洋平台的设计和建造需对平台场地进行包括海底地形地貌、海底表层、浅地层结构等内容的海洋工程地质勘察,从地貌、沉积物特征和地质测年等方面,利用实测的和平台设计用的海洋水文资料以及场地内土的物理力学参数,对海底稳定性进行分析计算,并在分析研究的基础上,进行场地的海底稳定性评价。
2 海洋常见灾害地质类型
海洋常见的灾害地质类型[2-5]如下:
活动断层、地震和火山等。它们不仅可能对海底构筑物造成直接破坏,而且地震可能诱发滑坡、浊流、沙土液化等其他灾害。
滑坡、崩塌、浊流和泥流等,它们的活动可能对钻井平台、海底管线构成直接破坏。
海底沙丘、海底沙波、潮流沙脊、冲刷槽、凹凸地和浅谷等,属于地貌类型的灾害,其分布和气象水文条件有关。
浅层气、泥底辟、软弱夹层、可液化砂层等。它们呈承压流体、塑性体状态存在于第四纪浅地层中。当海底构筑物基础触及这些地质体时,都有可能发生灾害。
埋藏古河道、埋藏古湖沼、埋藏起伏基岩面、埋藏珊瑚礁等。它们一般是浅地层中的透镜体,当钻井平台桩脚插入不同地质体时,由于持力不均会导致平台歪斜,甚至倾覆。
3 地球物理方法对平台场址调查的应用和研究
3.1 海底地形地貌探测
海底地形地貌探测包括单波束测深、多波束测深和旁侧声呐等,是通过探测声波在水下或岩土介质内的传播特征来研究岩土性质和完整性的一种物探方法,只是它们使用的声波频率和强度有差异,高频能提高分辨率,而低频则能提高声波的作用距离和穿透深度[6~9],目前很多探测系统都采用双频或多频探头结构,提高仪器的探测能力。
3.1.1 单波束测深和多波束测深
单波束测深系统是利用其换能器从水面向海底发射一束声脉冲,声波传到水底界面被反射,再回到换能器被接收,通过时间函数的转换,形成一组时间离散的数字量系列,进行实时处理,而在记录纸上直接显示测线上连续起伏变化的海底剖面。反映了海底表面形态的凸凹性质、高差大小和延伸范围(发育规模)。
多波束测深系统是一种由多个传感器组成的复杂系统,在测量断面内可形成十几个至上百个测点点条幅式测深数据,几百个甚至上千个反向散射数据,能获得较宽的海底扫幅和较高的测点密度,它具有全覆盖、高精度、高密度和高效率的特点。测深资料反映了海底表面起伏变化、高差大小和延伸范围,利用计算机处理和绘图技术,可制成所测海区海底地形图。
3.1.2 侧扫声呐扫描
侧扫声呐技术运用海底地物对入射声波反向散射的原理来探测海底形态,能直观地提供活动形态的声成像。旁侧声呐是一种高分辨率、多用途的水声设备,在海洋测绘、海底目标探测(如探测沉入水底的船、飞机、导弹、鱼雷及水雷等)、大陆架和海洋专属经济区划界、海洋地质、海洋工程、港口建设及航道疏浚等方面有广泛的应用。
侧扫声呐采用深拖型侧扫声呐系统,使用双频频率100/500 kHz,量程100/200 m,拖体距离海底10~30 m,可以获取海底表面的各种目标探测物,获取的声呐图像质量较高,可以分辨出海底表面的管道和电缆,海底物体的高度可以根据物体的阴影来确定。几种地球物理方法同步作业可以相互印证(图1)。
图1 侧扫声呐和单道地震剖面显示的灾害地质类型
3.2 中、浅地层探测
3.2.1 浅地层剖面测量
浅地层剖面测量系统是探测海底以下30 m内的浅层结构、海底沉积特征和海底表层矿产分布的重要方法之一。浅地层剖面系统的发射频率较低,一般在2.5~23 kHz之间,产生声波的电脉冲能量较大,发射声波具有较强的穿透力,能够有效穿透海底数十米的地层[10~11],地层分辨率在8 cm以上。它可以提供调查船正下方地层的垂直剖面信息,它可以准确地反映出地层界面及可能存在的浅层气、浅断层和古河道等海底地质灾害因素或其他物体(如管线)。浅地层剖面仪的穿透深度则因工作频率和海底沉积物类型的不同而异。
浅地层剖面测量系统采用德国INNOMAR公司SES-96参量浅层剖面系统,外接涌浪补偿系统,可输出水深数据。采用发射功率18 kw,主频100 kHz,差频4~12 kHz,在平台场址调查中一般使用差频8 kHz,探测到的地层分辨率较高,浅海可以探测管道,可以与磁力探测相互验证。
3.2.2 单道地震剖面测量
单道地震记录系统由单道数据采集处理系统、震源系统、信号接收电缆、EPC记录仪组成。主要用于了解海底以下200 m范围内的中、浅地层结构、沉积特征。
单道地震与油气地震勘探技术具有相同的工作原理。单道地震探测采用的震源能量小、频带宽(几十赫兹到几千赫兹)、主频高(几百赫兹到上千赫兹),一般选用电火花和气枪作为震源,能量从几十焦耳到几千焦耳,地层的穿透深度从几十米到数百米。
海上最常用的震源有空气枪和电火花二种,在平台场址调查中一般使用电火花震源,震源系统由震源控制箱、声源装置(电极、声脉冲发生器)组成。
如英国的CSP1500震源系统,主要包括CSP1500震源控制箱、SQUID500型电极、SQUID2000型电极或AA200型BOOMER组成电火花震源,该震源的激发能量级别为100~1500J,而且重复激发所需的时间较短。法国的SIG800J震源系统,采用120或200极鱼骨型电火花电极,能量输出270J、540 J和800J。在平台调查中一般选择250~800J的激发能量,激发间隔0.5 s(图2)。荷兰的GEO-SPARK 10kJ震源系统,GEO-SPARK2×800型电极能量输出在100~10000 J之间,最大工作水深为4500 m,最大穿透深度为750 ms,可以满足深水井场调查的需要。
我们选用法国的SIG16 4.8.12型和SIG16 12.12.34型水听器,英国的AAE20单道信号接收电缆,荷兰的GEO-Sense信号接收电缆,检波器按0.15~1 m的间隔并联组成,该接收电缆具有较高的灵敏度和较宽的频率响应,适用于高频反射信号的数据采集。
记录仪器与以上震源和水听器配套使用的是DELPHSEISMIC数据采集系统。该系统不仅可以主动控制震源每秒的激发次数,而且通过连接GPS导航系统,能够时时记录每一炮道的经纬度坐标,便于精确定位。该仪器的动态范围90db,16位模数转换,而且具有极高的采样频率,在与BOOMER震源配合使用时,其采样率高达6000~10000 Hz,极高的采样频率更有利于高频有效信号的接收。在海上单道地震数据采集过程中,可以通过控制测量船的速度来调整记录道间的距离,船速越慢,道间距越小,地震波组的连续性越好。在震源每秒激发二次的情况下,测量船体以3.5节的速度航行,地震记录道间的距离小于1 m,可见,该方法更适用于高精度的浅层地震勘探。
在资料处理流程中,采用有效的方法技术对数据进行信噪分离,削弱多次及绕射等干扰波的影响,可进一步提高单道地震记录的信噪比和分辨率,图3(左)清楚显示了浅层气及其沿着断层上升,红色椭圆圈着的反射波为强振幅,反射同相轴反转,具明显的反相特征;图3(右)显示了各种形态的埋藏古河道。
图2 单道地震剖面
图3 单道地震剖面显示的浅层气和埋藏古河道
3.3 高分辨率2D多道地震剖面测量
高分辨率2D地震资料的采集一般使用48道或96道多道地震电缆,为了避免虚反射对高频成分的压制作用,震源和检波器电缆的沉放深度比较浅,一般震源的沉放深度3m,一般电缆的沉放深度4 m,地震震源一般是小容量GI气枪震源或套筒枪组合震源,以保证产生高频率的地震子波。这种方法采集到的地震资料频带可达20~350 Hz,比常规的地震采集资料的频带(20~50 Hz)要高得多,完全可以满足识别薄层及地层结构的需要,提高了精度。
3.4 海洋磁力测量
磁法是利用地下岩矿石或者岩土介质之间的磁性差异所引起的磁场变化(磁异常)来寻找有用矿产,查明地下构造和解决其他地质问题的一种探测方法。磁力是解决工程地质调查中探测含磁性物体的有效手段。在各种调查中,我们使用GS880铯光泵磁力仪和SeaSPY海洋磁力仪,针对不同的研究目的分别采用不同的调查方法,均能获得满意的效果。它的优势在于不仅能够探测暴露于海底的磁性异常体,同时对于覆盖于海底以下的磁性异常体也有效。
在调查中的应用,由于海底光缆路由海域存在着已经敷设过的海缆(包括海底通讯电缆、电力电缆和光缆等),经过岁月的变迁,这些海缆在海域中的坐标有了变化,有的是否还存在也不明确;另外,过去敷设海缆时的定位仪存在较大的误差,为了探明光缆路由线交汇的海底电缆的精确位置,必须对光缆路由进行探测。在平台场址调查中,使用加拿大MarineMagnetics公司生产的SeaSPY海洋磁力仪进行勘察,结合旁侧声呐和浅地层剖面共同进行探测。图4是浅地层剖面探测到的管道,当磁力仪探头穿过电缆时测得的磁异常曲线,旁侧声呐扫描到的电缆和平台,磁异常的幅值一般可达几十到上百nT。
图4 浅层剖面、磁力和侧扫声呐探测到的管道、电缆和采油平台
4 结论与讨论
平台场址地质调查的方法主要有两种:一种为地球物理方法,另一种为地质取样方法。目前地球物理方法应用得比较广泛的是单波束测深或多波束测深、侧扫声呐、浅层剖面探测、单道地震、高分辨率2D地震和磁力测量等,以上六种水下探测系统在高精度的定位系统的支持下配合使用,可使我们获得平台场址内三维的工程地质条件,特别是危害工程建设的各种灾害地质现象的形态、规模、位置及其发展趋势等性质。其优点是比较经济、快速,对各种地球物理勘探方法都有各自解决某一方面地质问题的能力,各有优势和局限性。因此,在调查时要视调查的目的与要求,采用多种方法进行综合调查,使各种方法优势互补,以便取得最佳的成果。根据20多年来的实践经验,采用以高分辨率地震为主的综合浅层物探技术,同时在井位和预计抛锚位置进行2~3 m长的地质重力取样和地质浅钻,物探和地质取样相互结合,是了解海洋地质灾害因素、灾害的类型以及海洋工程地质有关问题的行之有效的调查方法,它能够既经济又快捷地为业主提供资料。
参考文献
[1]顾小芸.海洋工程地质的回顾与展望[J].工程地质学报,2000,8(1):40~45.
[2]金庆焕,李唐根.南沙海域区域地质构造[J].海洋地质与第四纪地质,2000,20(1):1~8.
[3]刘光鼎,陈洁.中国前新生代残留盆地油气勘探难点分析及对策[J].地球物理学进展,2005,20(2):273 ~275.
[4]陈洁,温宁,李学杰,南海油气资源潜力及勘探现状[J].地球物理学进展,2007,22(4):1285~1294.
[5]刘锡清,刘守全,等.南海灾害地质发育规律初探[J].中国地质灾害与防治学报,2002,13(1):12~16.
[6]Spiess F N.Seafloor research and ocean technology[J].MTS Journal,1987,21(2):5~17.
[7]Wille Peter C.Sound Images of the Ocean in Research and Monitoring [M].Berlin:Springer,2005.
[8]Fish J P,Carr H A.Sound Reflections(Advanced Applications of Side Scan Sonar).Oreans:Lower CapePublishing,2001.
[9]金翔龙,海洋地球物理研究与海底探测声学技术的发展.地球物理学进展,2007,22(4):1243~1249.
[10]Dybedal J.Kongsberg Defence &Aerospace AS.Training Course TOPASPS 018 Parametric Sub-bottom Profiler System,2003.
[11]Dybedal J .Kongsberg Defence &Aerospace AS.TOPASPS 018 Operator Manual,2002.
Marine Geophysical Survey Techniques and Their Applications to Well Site Survey
Ma Shengzhong
(Guangzhou Marine geological Survey,Guangzhou,510760)
Abstract:The safety of marine oil drilling platform is closely related to the submarine engineeringgeological conditions of the well site.Geophysical technique has an irreplaceable role in marineengineering and hazard geological survey.Practice proves that,using geophysical instruments in-cluding echo sounder,sidescan sonar,sub-bottom profiler,single-channel seismic,high resolu-tion 2D seismic and marine magnetometer etc.to carry out a comprehensive survey can efficientlyreveal the topography and potential geo-hazards of the well site area.
Key words:Well site survey Marine geophysical survey Submarine geo-hazards
关于“南海西部深海平原SA-岩心浊流沉积特征”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[清商]投稿,不代表海宁号立场,如若转载,请注明出处:https://hnjsjm.com/hainin/1348.html
评论列表(3条)
我是海宁号的签约作者“清商”
本文概览:网上有关“南海西部深海平原SA-岩心浊流沉积特征”话题很是火热,小编也是针对南海西部深海平原SA-岩心浊流沉积特征寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临...
文章不错《南海西部深海平原SA-岩心浊流沉积特征》内容很有帮助